<listing id="1dh7d"></listing>
<progress id="1dh7d"><cite id="1dh7d"></cite></progress>
<progress id="1dh7d"></progress>
<progress id="1dh7d"></progress><progress id="1dh7d"><var id="1dh7d"><ruby id="1dh7d"></ruby></var></progress><listing id="1dh7d"><var id="1dh7d"><i id="1dh7d"></i></var></listing><progress id="1dh7d"></progress>
<listing id="1dh7d"><var id="1dh7d"></var></listing>
<listing id="1dh7d"></listing>
<listing id="1dh7d"></listing>
<listing id="1dh7d"><cite id="1dh7d"></cite></listing>
<listing id="1dh7d"><var id="1dh7d"><i id="1dh7d"></i></var></listing>
<listing id="1dh7d"></listing>
15601689581
當前位置:主頁 > 技術文章 > 基于Moku:Lab激光鎖盒的PDH技術,激光穩頻一體化解決方案

基于Moku:Lab激光鎖盒的PDH技術,激光穩頻一體化解決方案

時間:2022-04-08 點擊次數:227

基于Moku:Lab 激光鎖盒的PDH技術,一種基于FPGA的激光穩頻一體化解決方案

在這篇應用文章中,講述了一個我們上海昊量光電設備有限公司真實的故事,我們的一個客戶如何用Moku:Lab替換了幾個復雜的電子設備,并使用Pound-Drever-Hall (PDH)技術將Innolight Prometheus激光器的頻率鎖定在一個超穩腔內。的Moku:Lab產品。

 

一. 介紹

Pound-Drever-Hall(PDH)技術是一種主動鎖頻技術,是目前激光穩頻系統中性能好的手段之一,由 R.V. Pound,Ronald Drever 和 John L在19831年提出的。利用Fabry-Perot(F-P)腔穩頻的激光系統是最常見的一種穩頻方法。當激光被射入一個F-P腔中時,它會被反射、透射或吸收,腔的長度越接近激光器的精確波長的一半,激光器的能量就會被傳輸的越遠。不幸的是,激光的頻率和腔長的連續變化取決于一系列的因素,如環境溫度、注入電流和量子波動。PDH鎖定利用從諧振腔反射出來的光來產生一個誤差信號,來對諧振腔的長度或激光器的頻率進行微調,從而完成腔長和激光頻率的某種匹配,以達到最大限度地實現遠距離傳輸。

 

根據框圖簡單說一下PDH技術,激光器輸出頻率為ω的激光,然后經過EOM晶體(electric-optical modulator)電光調制器,對激光光場進行射頻電光相位調制,然后將調制后的激光信號經過偏振分束棱鏡(PBS)與四分之一波片(λ/4)進入光學腔,然后與光學腔諧振,然后通過反射到達光電探測器,偏振分束棱鏡(PBS)與四分之一波片(λ/4)的作用就是讓腔反射光進入探測器。然后對反射光信號進行相位解調,得到反射光中的頻率失諧信息,產生誤差信號,然后通過低通濾波器和比例積分電路處理后,反饋到激光器的壓電陶瓷或者聲光調制器等其他響應器件,進行頻率補償,最終實現將普通激光鎖定在超穩光學腔上。關于PDH技術的理論細節可以在一些綜述論文和學位論文中找到。為了實現PDH鎖定,需要一些專用的和定制的電子儀器,包括信號發生器,混頻器和低通濾波器。Moku:Lab的激光鎖盒集成了大部分的PDH電子儀器,在提供高精度的激光穩頻功能上是具有緊湊的,易于使用的儀器。

圖1:PDH穩頻系統原理圖

 

二. 實驗裝置

Moku:Lab的激光鎖盒集成了波形發生器、混頻器、低通濾波器和用于PDH鎖定的雙級聯PID控制器。通過調節激光腔的長度,可以監測反射光的振幅,并在屏幕上實時顯示PDH信號。用戶只需輕輕一敲就可以將激光鎖定在任何過零點。

圖2: 主用戶界面Moku:Lab激光鎖盒

 

在一個示例設置中,Prometheus激光器(Innolight, 20NE)的出射光由電光調制器(EOM, iXBlue, NIR-MPX-LN-0.1)調制,照射到由三鏡環形腔(168 mm,即1.78 GHz的FSR),此腔體線寬為190 kHz。反射光被輸入耦合器即時反射捕獲。用兩個光電二極管(PD, Thorlabs, PDA05CF2)來檢測腔體的透射光和反射光。PD上檢測到的信號被輸入到Moku:Lab的輸入1(混頻器輸入,交流耦合電阻50 Ω)和輸入2(監視器,直流耦合電阻50 Ω)。利用Moku的激光鎖盒波形發生器,在3.0 MHz的頻率下產生了500 mVpp的本振(LO)信號。然后LO信號從Moku:Lab的輸出2輸出,通過偏置器 (miniccircuits, ZFBT-6G+)驅動EOM。用LO數字信號波形解調來自光學腔的反射響應信號,這里我們用到了數字混頻器和角頻300.0 kHz的四階數字低通濾波器。通過掃描空腔共振的激光頻率,調整相位延遲,直到誤差信號峰-峰電壓(斜率)最大,從而調整混頻器處LO信號的相移。

 

快速PID控制器的積分器單位增益頻率(0 dB點)為5.8 kHz,初始積分器飽和角為100 Hz。然后將快速PID的輸出1直接連接到激光器的壓電陶瓷上來驅動激光頻率。在掃描模式下,該輸出也會產生斜坡信號來發現空腔諧振。低頻PID控制器的比例增益為-32.2 dB,積分器交叉頻率為200 mHz。Moku:Lab的輸出2出來后通過Bias-Tee分成了兩路,一路到了EOM,一路到了激光的溫度控制BNC接口端。在該激光溫度致動器上放置了一個20dB的衰減(Minicircuits, HAT-20+),以降低其靈敏度。

圖3:利用Moku:Lab建立的PDH技術的實驗裝置

 

三. 利用Moku:Lab進行的PDH激光穩頻

為了鎖定PDH,PDH讀出信號首先在激光鎖定模式下由斜坡掃描產生。緩慢的溫度偏移被調整,以使空腔共振接近掃描范圍的中間。輕觸一下界面中間的過零點選擇為鎖定點。這用到了快速PID控制器,并且把激光頻率鎖定在腔中。然后關閉積分器飽和,使激光頻率達到腔體的直流頻率。然后使用慢速控制器,這樣排除了激光器的壓電轉換器(PZT)在低于0.1 Hz頻率下的控制工作,并確保激光器在大環境范圍變化(辦公室/實驗室)的條件下保持鎖定。

 

圖4:PDH誤差信號繪制和點擊鎖定過零點示意圖

 

圖5:PID控制器配置示意圖

 

四. 結果和討論

通過監控傳輸的光電探測器功率,并通過ccd相機(也可以使用紅外敏感觀察卡)查看傳輸過程中的激光模式形狀,來驗證激光對腔和TEM00模式的鎖定。這些監測信號的時域信息很容易在Moku:Lab的激光鎖盒功能內置的示波器中實時查看。

利用內置的示波器測量特性來捕捉誤差信號均方根RMS,對整個環路的增益進行了基本優化。增加增益使誤差信號的均方根最??;太多的增益會引起振蕩,太少的增益意味著激光頻率擾動仍然沒有得到充分的抑制。進一步的環路性能改進可以通過頻域優化來實現,這可以通過在Moku:Lab輸出1和激光壓電之間注入掃頻正弦擾動來實現,激光壓電使用了求和前置放大器,并可以測量回路中注入擾動的抑制。這樣的測量可以進行使用第二個Moku:Lab的功能:頻率響應分析儀。在這些高度優化的配置中,環路的單位增益頻率應該優化到30-60 kHz(高于這通常相對于激光的壓電響應速度快很多)。

 

在一次測試中,使用單腔雙激光測試驗證了控制回路的性能。第二個激光器被鎖定在腔內一個自由光譜范圍(FSR)上,第一個激光器的鎖與第二個具有相同的Moku:Lab激光鎖盒設置。在兩個獨立頻率的鎖定下,比較了兩種激光器在相同的普通腔的噪聲,獨立的電子噪聲和Moku數字化噪聲。這兩種鎖定激光器之間的剩余頻率變化與腔間隔噪聲、腔涂層的熱噪聲和來自實驗室環境的常見振動無關,這種噪聲僅由控制回路和傳感器產生,測量方法是將來自兩個激光路徑的光結合到一個高速光電探測器中,與一個穩定的GHz函數發生器混頻,并使用第三個Moku:Lab儀器,一個相位表,來跟蹤頻率偏差。Moku:Lab相位表通過產生相對頻率噪聲的ASD來讀出剩余頻率噪聲。我們得到了在每個環路10 Hz的情況下,控制回路的殘余噪聲是0.1 Hz/ Hz。腔激光鎖模的真實絕對性能最終受到基頻熱涂層噪聲的限制。

 

您可以通過我們昊量光電的網站了解更多的產品信息,我們將竭誠為您服務。

昊量微信在線客服

昊量微信在線客服

版權所有 © 2022上海昊量光電設備有限公司 備案號:滬ICP備08102787號-3 技術支持:化工儀器網 管理登陸 Sitemap.xml

欧美激情A片视频,未满十八岁看的网站,91在线免费视频观看,精国产精品特色视频网站,日韩无遮挡肉喷水在线观看